
The universe is all of space and time[a] and their contents,[10] including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787.020 billion years ago,[11] and the universe has been expanding ever since. While the spatial size of the entire universe is unknown,[3] the cosmic inflation equation indicates that it must have a minimum diameter of 23 trillion light years,[12] and it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.
Definition
0:50
Hubble Space Telescope – Ultra deep field galaxies to Legacy field zoom out
(video 00:50; May 2, 2019)
The physical universe is defined as all of space and time[a] (collectively referred to as spacetime) and their contents.[10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.[23][24][25] The universe also includes the physical laws that influence energy and matter, such as conservation laws, classical mechanics, and relativity.[26]
The universe is often defined as "the totality of existence", or everything that exists, everything that has existed, and everything that will exist.[26] In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe.[28][29][30] The word universe may also refer to concepts such as the cosmos, the world, and nature.[31][32]
Etymology
The word universe derives from the Old French word univers, which in turn derives from the Latin word universum.[33] The Latin word was used by Cicero and later Latin authors in many of the same senses as the modern English word is used.[34]
Synonyms
A term for universe among the ancient Greek philosophers from Pythagoras onwards was τὸ πᾶν (tò pân) 'the all', defined as all matter and all space, and τὸ ὅλον (tò hólon) 'all things', which did not necessarily include the void.[35][36] Another synonym was ὁ κόσμος (ho kósmos) meaning 'the world, the cosmos'.[37] Synonyms are also found in Latin authors (totum, mundus, natura)[38] and survive in modern languages, e.g., the German words Das All, Weltall, and Natur for universe. The same synonyms are found in English, such as everything (as in the theory of everything), the cosmos (as in cosmology), the world (as in the many-worlds interpretation), and nature (as in natural laws or natural philosophy).[39]

The prevailing model for the evolution of the universe is the Big Bang theory.[40][41] The Big Bang model states that the earliest state of the universe was an extremely hot and dense one, and that the universe subsequently expanded and cooled. The model is based on general relativity and on simplifying assumptions such as the homogeneity and isotropy of space. A version of the model with a cosmological constant (Lambda) and cold dark matter, known as the Lambda-CDM model, is the simplest model that provides a reasonably good account of various observations about the universe. The Big Bang model accounts for observations such as the correlation of distance and redshift of galaxies, the ratio of the number of hydrogen to helium atoms, and the microwave radiation background.
In this diagram, time passes from left to right, so at any given time, the universe is represented by a disk-shaped "slice" of the diagram
The initial hot, dense state is called the Planck epoch, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, and gravity—currently the weakest by far of the four known forces—is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. Since the Planck epoch, space has been expanding to its present scale, with a very short but intense period of cosmic inflation believed to have occurred within the first 10−32 seconds.[42] This was a kind of expansion different from those we can see around us today. Objects in space did not physically move; instead the metric that defines space itself changed. Although objects in spacetime cannot move faster than the speed of light, this limitation does not apply to the metric governing spacetime itself. This initial period of inflation is believed to explain why space appears to be very flat, and much larger than light could travel since the start of the universe.[clarification needed]
Within the first fraction of a second of the universe's existence, the four fundamental forces had separated. As the universe continued to cool down from its inconceivably hot state, various types of subatomic particles were able to form in short periods of time known as the quark epoch, the hadron epoch, and the lepton epoch. Together, these epochs encompassed less than 10 seconds of time following the Big Bang. These elementary particles associated stably into ever larger combinations, including stable protons and neutrons, which then formed more complex atomic nuclei through nuclear fusion. This process, known as Big Bang nucleosynthesis, only lasted for about 17 minutes and ended about 20 minutes after the Big Bang, so only the fastest and simplest reactions occurred. About 25% of the protons and all the neutrons in the universe, by mass, were converted to helium, with small amounts of deuterium (a form of hydrogen) and traces of lithium. Any other element was only formed in very tiny quantities. The other 75% of the protons remained unaffected, as hydrogen nuclei.
After nucleosynthesis ended, the universe entered a period known as the photon epoch. During this period, the universe was still far too hot for matter to form neutral atoms, so it contained a hot, dense, foggy plasma of negatively charged electrons, neutral neutrinos and positive nuclei. After about 377,000 years, the universe had cooled enough that electrons and nuclei could form the first stable atoms. This is known as recombination for historical reasons; in fact electrons and nuclei were combining for the first time. Unlike plasma, neutral atoms are transparent to many wavelengths of light, so for the first time the universe also became transparent. The photons released ("decoupled") when these atoms formed can still be seen today; they form the cosmic microwave background (CMB).
As the universe expands, the energy density of electromagnetic radiation decreases more quickly than does that of matter because the energy of a photon decreases with its wavelength. At around 47,000 years, the energy density of matter became larger than that of photons and neutrinos, and began to dominate the large scale behavior of the universe. This marked the end of the radiation-dominated era and the start of the matter-dominated era.
In the earliest stages of the universe, tiny fluctuations within the universe's density led to concentrations of dark matter gradually forming. Ordinary matter, attracted to these by gravity, formed large gas clouds and eventually, stars and galaxies, where the dark matter was most dense, and voids where it was least dense. After around 100 – 300 million years,[citation needed] the first stars formed, known as Population III stars. These were probably very massive, luminous, non metallic and short-lived. They were responsible for the gradual reionization of the universe between about 200-500 million years and 1 billion years, and also for seeding the universe with elements heavier than helium, through stellar nucleosynthesis.[43] The universe also contains a mysterious energy—possibly a scalar field—called dark energy, the density of which does not change over time. After about 9.8 billion years, the universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present dark-energy-dominated era.[44] In this era, the expansion of the universe is accelerating due to dark energy.




Comments
There are no comments for this story
Be the first to respond and start the conversation.