Beginner’s Roadmap to Learn Data Structures & Algorithms
Top three most required tech stack for the following roles

Beginner’s Roadmap to Learn Data Structures & Algorithms
1. Foundations: Start with the basics of programming and mathematical concepts to build a strong foundation.
2. Data Structure: Dive into essential data structures like arrays, linked lists, stacks, and queues to organise and store data efficiently.
3. Searching & Sorting: Learn various search and sort techniques to optimise data retrieval and organisation.
4. Trees & Graphs: Understand the concepts of binary trees and graph representation to tackle complex hierarchical data.
5. Recursion: Grasp the principles of recursion and how to implement recursive algorithms for problem-solving.
6. Advanced Data Structures: Explore advanced structures like hashing, heaps, and hash maps to enhance data manipulation.
7. Algorithms: Master algorithms such as greedy, divide and conquer, and dynamic programming to solve intricate problems.
8. Advanced Topics: Delve into backtracking, string algorithms, and bit manipulation for a deeper understanding.
9. Problem Solving: Practice on coding platforms like LeetCode to sharpen your skills and solve real-world algorithmic challenges.
10. Projects & Portfolio: Build real-world projects and showcase your skills on GitHub to create an impressive portfolio.
Essential Data Science Concepts Everyone Should Know:
1. Data Types and Structures:
• Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)
• Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)
• Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)
2. Descriptive Statistics:
• Measures of Central Tendency: Mean, Median, Mode (describing the typical value)
• Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)
• Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)
3. Probability and Statistics:
• Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)
• Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)
• Confidence Intervals: Estimating the range of plausible values for a population parameter
4. Machine Learning:
• Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)
• Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)
• Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)
5. Data Cleaning and Preprocessing:
• Missing Value Handling: Imputation, Deletion (dealing with incomplete data)
• Outlier Detection and Removal: Identifying and addressing extreme values
• Feature Engineering: Creating new features from existing ones (e.g., combining variables)
6. Data Visualization:
• Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)
• Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)
7. Ethical Considerations in Data Science:
• Data Privacy and Security: Protecting sensitive information
• Bias and Fairness: Ensuring algorithms are unbiased and fair
8. Programming Languages and Tools:
• Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn
• R: Statistical programming language with strong visualization capabilities
• SQL: For querying and manipulating data in databases
9. Big Data and Cloud Computing:
• Hadoop and Spark: Frameworks for processing massive datasets
• Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)
10. Domain Expertise:
• Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis
• Problem Framing: Defining the right questions and objectives for data-driven decision making
Bonus:
• Data Storytelling: Communicating insights and findings in a clear and engaging manner
Top three most required tech stack for the following roles:
1. Data Analyst: SQL, Excel, Tableau/Power BI
2. Data Scientist: Python, R, SQL
3. Quantitative Analyst: Python, R, MATLAB
4. Business Analyst: SQL, Business Requirements Gathering, Agile Methodologies, Power BI/Tableau
5. Data Engineer: Python/Scala, SQL, Cloud, Apache Spark
6. Machine Learning Engineer: Python, TensorFlow/PyTorch, Docker/Kubernetes.
10 great Python packages for Data Science not known to many:
1️⃣ CleanLab
Cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset.
2️⃣ LazyPredict
A Python library that enables you to train, test, and evaluate multiple ML models at once using just a few lines of code.
3️⃣ Lux
A Python library for quickly visualizing and analyzing data, providing an easy and efficient way to explore data.
4️⃣ PyForest
A time-saving tool that helps in importing all the necessary data science libraries and functions with a single line of code.
5️⃣ PivotTableJS
PivotTableJS lets you interactively analyse your data in Jupyter Notebooks without any code 🔥
6️⃣ Drawdata
Drawdata is a python library that allows you to draw a 2-D dataset of any shape in a Jupyter Notebook.
7️⃣ black
The Uncompromising Code Formatter
8️⃣ PyCaret
An open-source, low-code machine learning library in Python that automates the machine learning workflow.
9️⃣ PyTorch-Lightning by LightningAI
Streamlines your model training, automates boilerplate code, and lets you focus on what matters: research & innovation.
🔟 Streamlit
A framework for creating web applications for data science and machine learning projects, allowing for easy and interactive data viz & model deployment.
Top 10 important data science concepts
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
How fresher can get a job as a data scientist?©
1. Education: Obtain a degree in a relevant field such as computer science, statistics, mathematics, or data science. Consider pursuing additional certifications or specialized courses in data science to enhance your skills.
2. Build a strong foundation: Develop a strong understanding of key concepts in data science such as statistics, machine learning, programming languages (such as Python or R), and data visualization.
3. Hands-on experience: Gain practical experience by working on projects, participating in hackathons, or internships. Building a portfolio of projects showcasing your data science skills can be beneficial when applying for jobs.
4. Networking: Attend industry events, conferences, and meetups to network with professionals in the field. Networking can help you learn about job opportunities and make valuable connections.
5. Apply for entry-level positions: Look for entry-level positions such as data analyst, research assistant, or junior data scientist roles to gain experience and start building your career in data science.
6. Prepare for interviews: Practice common data science interview questions, showcase your problem-solving skills, and be prepared to discuss your projects and experiences related to data science.
7. Continuous learning: Data science is a rapidly evolving field, so it's important to stay updated on the latest trends, tools, and techniques. Consider taking online courses, attending workshops, or joining professional organizations to continue learning and growing in the field.
One day or Day one. You decide.
Data Science edition.
𝗢𝗻𝗲 𝗗𝗮𝘆 : I will learn SQL.
𝗗𝗮𝘆 𝗢𝗻𝗲: Download mySQL Workbench.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will build my projects for my portfolio.
𝗗𝗮𝘆 𝗢𝗻𝗲: Look on Kaggle for a dataset to work on.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will master statistics.
𝗗𝗮𝘆 𝗢𝗻𝗲: Start the free Khan Academy Statistics and Probability course.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will learn to tell stories with data.
𝗗𝗮𝘆 𝗢𝗻𝗲: Install Tableau Public and create my first chart.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will become a Data Scientist.
𝗗𝗮𝘆 𝗢𝗻𝗲: Update my resume and apply to some Data Science job postings.



Comments
There are no comments for this story
Be the first to respond and start the conversation.