Geeks logo

Most Important Mathematical Equations

Data Science

By Bahati MulishiPublished about a year ago 3 min read

Most Important Mathematical Equations in Data Science!

1️⃣ Gradient Descent: Optimization algorithm minimizing the cost function.

2️⃣ Normal Distribution: Distribution characterized by mean μ\muμ and variance σ2\sigma^2σ2.

3️⃣ Sigmoid Function: Activation function mapping real values to 0-1 range.

4️⃣ Linear Regression: Predictive model of linear input-output relationships.

5️⃣ Cosine Similarity: Metric for vector similarity based on angle cosine.

6️⃣ Naive Bayes: Classifier using Bayes’ Theorem and feature independence.

7️⃣ K-Means: Clustering minimizing distances to cluster centroids.

8️⃣ Log Loss: Performance measure for probability output models.

9️⃣ Mean Squared Error (MSE): Average of squared prediction errors.

🔟 MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.

1️⃣1️⃣ MSE + L2 Regularization: Adds penalty to prevent overfitting.

1️⃣2️⃣ Entropy: Uncertainty measure used in decision trees.

1️⃣3️⃣ Softmax: Converts logits to probabilities for classification.

1️⃣4️⃣ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.

1️⃣5️⃣ Correlation: Measures linear relationships between variables.

1️⃣6️⃣ Z-score: Standardizes value based on standard deviations from mean.

1️⃣7️⃣ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.

1️⃣8️⃣ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.

1️⃣9️⃣ R-squared (R²): Proportion of variance explained by regression.

2️⃣0️⃣ F1 Score: Harmonic mean of precision and recall.

2️⃣1️⃣ Expected Value: Weighted average of all possible values.

Data Science Roadmap

|

|-- Fundamentals

|   |-- Mathematics

|   |   |-- Linear Algebra

|   |   |-- Calculus

|   |   |-- Probability and Statistics

|   |

|   |-- Programming

|   |   |-- Python

|   |   |-- R

|   |   |-- SQL

|

|-- Data Collection and Cleaning

|   |-- Data Sources

|   |   |-- APIs

|   |   |-- Web Scraping

|   |   |-- Databases

|   |

|   |-- Data Cleaning

|   |   |-- Missing Values

|   |   |-- Data Transformation

|   |   |-- Data Normalization

|

|-- Data Analysis

|   |-- Exploratory Data Analysis (EDA)

|   |   |-- Descriptive Statistics

|   |   |-- Data Visualization

|   |   |-- Hypothesis Testing

|   |

|   |-- Data Wrangling

|   |   |-- Pandas

|   |   |-- NumPy

|   |   |-- dplyr (R)

|

|-- Machine Learning

|   |-- Supervised Learning

|   |   |-- Regression

|   |   |-- Classification

|   |

|   |-- Unsupervised Learning

|   |   |-- Clustering

|   |   |-- Dimensionality Reduction

|   |

|   |-- Reinforcement Learning

|   |   |-- Q-Learning

|   |   |-- Policy Gradient Methods

|   |

|   |-- Model Evaluation

|   |   |-- Cross-Validation

|   |   |-- Performance Metrics

|   |   |-- Hyperparameter Tuning

|

|-- Deep Learning

|   |-- Neural Networks

|   |   |-- Feedforward Networks

|   |   |-- Backpropagation

|   |

|   |-- Advanced Architectures

|   |   |-- Convolutional Neural Networks (CNN)

|   |   |-- Recurrent Neural Networks (RNN)

|   |   |-- Transformers

|   |

|   |-- Tools and Frameworks

|   |   |-- TensorFlow

|   |   |-- PyTorch

|

|-- Natural Language Processing (NLP)

|   |-- Text Preprocessing

|   |   |-- Tokenization

|   |   |-- Stop Words Removal

|   |   |-- Stemming and Lemmatization

|   |

|   |-- NLP Techniques

|   |   |-- Word Embeddings

|   |   |-- Sentiment Analysis

|   |   |-- Named Entity Recognition (NER)

|

|-- Data Visualization

|   |-- Basic Plotting

|   |   |-- Matplotlib

|   |   |-- Seaborn

|   |   |-- ggplot2 (R)

|   |

|   |-- Interactive Visualization

|   |   |-- Plotly

|   |   |-- Bokeh

|   |   |-- Dash

|

|-- Big Data

|   |-- Tools and Frameworks

|   |   |-- Hadoop

|   |   |-- Spark

|   |

|   |-- NoSQL Databases

|       |-- MongoDB

|       |-- Cassandra

|

|-- Cloud Computing

|   |-- Cloud Platforms

|   |   |-- AWS

|   |   |-- Google Cloud

|   |   |-- Azure

|   |

|   |-- Data Services

|       |-- Data Storage (S3, Google Cloud Storage)

|       |-- Data Pipelines (Dataflow, AWS Data Pipeline)

|

|-- Model Deployment

|   |-- Serving Models

|   |   |-- Flask/Django

|   |   |-- FastAPI

|   |

|   |-- Model Monitoring

|       |-- Performance Tracking

|       |-- A/B Testing

|

|-- Domain Knowledge

|   |-- Industry-Specific Applications

|   |   |-- Finance

|   |   |-- Healthcare

|   |   |-- Retail

|

|-- Ethical and Responsible AI

|   |-- Bias and Fairness

|   |-- Privacy and Security

|   |-- Interpretability and Explainability

|

|-- Communication and Storytelling

|   |-- Reporting

|   |-- Dashboarding

|   |-- Presentation Skills

|

|-- Advanced Topics

|   |-- Time Series Analysis

|   |-- Anomaly Detection

|   |-- Graph Analytics

└-- Comments

    |-- # Single-line comment (Python)

    └-- /* Multi-line comment (Python/R) */

how to

About the Creator

Reader insights

Be the first to share your insights about this piece.

How does it work?

Add your insights

Comments (2)

Sign in to comment
  • Alyssa wilkshoreabout a year ago

    Thanks for sharing

  • ReadShakurrabout a year ago

    I really love your content and how it's crafted , I love it and happily subscribed , you can check out my content and subscribe to me also , thanks for this beautiful one

Find us on social media

Miscellaneous links

  • Explore
  • Contact
  • Privacy Policy
  • Terms of Use
  • Support

© 2026 Creatd, Inc. All Rights Reserved.