
DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. Nearly every cell in a person's body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA). Mitochondria are structures within cells that convert the energy from food into a form that cells can use.
The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about 3 billion bases, and more than 99 percent of those bases are the same in all people. The order, or sequence, of these bases determines the information available for building and maintaining an organism, similar to the way in which letters of the alphabet appear in a certain order to form words and sentences.
DNA bases pair up with each other, A with T and C with G, to form units called base pairs. Each base is also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar, and phosphate are called a nucleotide. Nucleotides are arranged in two long strands that form a spiral called a double helix. The structure of the double helix is somewhat like a ladder, with the base pairs forming the ladder's rungs and the sugar and phosphate molecules forming the vertical sidepieces of the ladder.
An important property of DNA is that it can replicate, or make copies of itself. Each strand of DNA in the double helix can serve as a pattern for duplicating the sequence of bases. This is critical when cells divide because each new cell needs to have an exact copy of the DNA present in the old cell.
DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone
DNA Types
There are three different DNA types:
A-DNA: It is a right-handed double helix similar to the B-DNA form. Dehydrated DNA takes an A form that protects the DNA during extreme conditions such as desiccation. Protein binding also removes the solvent from DNA, and the DNA takes an A form.
B-DNA: This is the most common DNA conformation and is a right-handed helix. The majority of DNA has a B type conformation under normal physiological conditions.
Z-DNA: Z-DNA is a left-handed DNA where the double helix winds to the left in a zig-zag pattern. It was discovered by Andres Wang and Alexander Rich. It is found ahead of the start site of a gene and hence, is believed to play some role in gene regulation.
DNA was first recognized and identified by the Swiss biologist Johannes Friedrich Miescher in 1869 during his research on white blood cells.
The double helix structure of a DNA molecule was later discovered through the experimental data by James Watson and Francis Crick. Finally, it was proved that DNA is responsible for storing genetic information in living organisms.
DNA Function
DNA is the genetic material which carries all the hereditary information. Genes are the small segments of DNA, consisting mostly of 250 – 2 million base pairs. A gene code for a polypeptide molecule, where three nitrogenous bases sequence stands for one amino acid.
Polypeptide chains are further folded in secondary, tertiary and quaternary structures to form different proteins. As every organism contains many genes in its DNA, different types of proteins can be formed. Proteins are the main functional and structural molecules in most organisms. Apart from storing genetic information, DNA is involved in:
•Replication process: Transferring the genetic information from one cell to its daughters and from one generation to the next and equal distribution of DNA during the cell division
•Mutations: The changes which occur in the DNA sequences
•Transcription
•Cellular Metabolism
•DNA Fingerprinting
•Gene Therapy




Comments
There are no comments for this story
Be the first to respond and start the conversation.